\(\int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx\) [39]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 47 \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\frac {(A-i B) x}{2 a}+\frac {i A-B}{2 d (a+i a \tan (c+d x))} \]

[Out]

1/2*(A-I*B)*x/a+1/2*(I*A-B)/d/(a+I*a*tan(d*x+c))

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {3607, 8} \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\frac {-B+i A}{2 d (a+i a \tan (c+d x))}+\frac {x (A-i B)}{2 a} \]

[In]

Int[(A + B*Tan[c + d*x])/(a + I*a*Tan[c + d*x]),x]

[Out]

((A - I*B)*x)/(2*a) + (I*A - B)/(2*d*(a + I*a*Tan[c + d*x]))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3607

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*((a + b*Tan[e + f*x])^m/(2*a*f*m)), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {i A-B}{2 d (a+i a \tan (c+d x))}+\frac {(A-i B) \int 1 \, dx}{2 a} \\ & = \frac {(A-i B) x}{2 a}+\frac {i A-B}{2 d (a+i a \tan (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.19 \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\frac {(A-i B) \arctan (\tan (c+d x))}{2 a d}-\frac {A+i B}{2 a d (i-\tan (c+d x))} \]

[In]

Integrate[(A + B*Tan[c + d*x])/(a + I*a*Tan[c + d*x]),x]

[Out]

((A - I*B)*ArcTan[Tan[c + d*x]])/(2*a*d) - (A + I*B)/(2*a*d*(I - Tan[c + d*x]))

Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.15

method result size
risch \(-\frac {i x B}{2 a}+\frac {x A}{2 a}-\frac {{\mathrm e}^{-2 i \left (d x +c \right )} B}{4 a d}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )} A}{4 a d}\) \(54\)
derivativedivides \(\frac {A}{2 d a \left (\tan \left (d x +c \right )-i\right )}+\frac {i B}{2 d a \left (\tan \left (d x +c \right )-i\right )}+\frac {A \arctan \left (\tan \left (d x +c \right )\right )}{2 d a}-\frac {i B \arctan \left (\tan \left (d x +c \right )\right )}{2 d a}\) \(76\)
default \(\frac {A}{2 d a \left (\tan \left (d x +c \right )-i\right )}+\frac {i B}{2 d a \left (\tan \left (d x +c \right )-i\right )}+\frac {A \arctan \left (\tan \left (d x +c \right )\right )}{2 d a}-\frac {i B \arctan \left (\tan \left (d x +c \right )\right )}{2 d a}\) \(76\)
norman \(\frac {\frac {\left (-i B +A \right ) x}{2 a}-\frac {-i A +B}{2 a d}+\frac {\left (-i B +A \right ) x \left (\tan ^{2}\left (d x +c \right )\right )}{2 a}+\frac {\left (i B +A \right ) \tan \left (d x +c \right )}{2 a d}}{1+\tan ^{2}\left (d x +c \right )}\) \(81\)

[In]

int((A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/2*I*x/a*B+1/2*x/a*A-1/4/a/d*exp(-2*I*(d*x+c))*B+1/4*I/a/d*exp(-2*I*(d*x+c))*A

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.89 \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\frac {{\left (2 \, {\left (A - i \, B\right )} d x e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A - B\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{4 \, a d} \]

[In]

integrate((A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(2*(A - I*B)*d*x*e^(2*I*d*x + 2*I*c) + I*A - B)*e^(-2*I*d*x - 2*I*c)/(a*d)

Sympy [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.85 \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\begin {cases} \frac {\left (i A - B\right ) e^{- 2 i c} e^{- 2 i d x}}{4 a d} & \text {for}\: a d e^{2 i c} \neq 0 \\x \left (- \frac {A - i B}{2 a} + \frac {\left (A e^{2 i c} + A - i B e^{2 i c} + i B\right ) e^{- 2 i c}}{2 a}\right ) & \text {otherwise} \end {cases} + \frac {x \left (A - i B\right )}{2 a} \]

[In]

integrate((A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x)

[Out]

Piecewise(((I*A - B)*exp(-2*I*c)*exp(-2*I*d*x)/(4*a*d), Ne(a*d*exp(2*I*c), 0)), (x*(-(A - I*B)/(2*a) + (A*exp(
2*I*c) + A - I*B*exp(2*I*c) + I*B)*exp(-2*I*c)/(2*a)), True)) + x*(A - I*B)/(2*a)

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate((A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negative exponent.

Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 83 vs. \(2 (35) = 70\).

Time = 0.34 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.77 \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=-\frac {\frac {{\left (-i \, A - B\right )} \log \left (\tan \left (d x + c\right ) + i\right )}{a} + \frac {{\left (i \, A + B\right )} \log \left (\tan \left (d x + c\right ) - i\right )}{a} + \frac {-i \, A \tan \left (d x + c\right ) - B \tan \left (d x + c\right ) - 3 \, A - i \, B}{a {\left (\tan \left (d x + c\right ) - i\right )}}}{4 \, d} \]

[In]

integrate((A+B*tan(d*x+c))/(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

-1/4*((-I*A - B)*log(tan(d*x + c) + I)/a + (I*A + B)*log(tan(d*x + c) - I)/a + (-I*A*tan(d*x + c) - B*tan(d*x
+ c) - 3*A - I*B)/(a*(tan(d*x + c) - I)))/d

Mupad [B] (verification not implemented)

Time = 7.15 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.96 \[ \int \frac {A+B \tan (c+d x)}{a+i a \tan (c+d x)} \, dx=\frac {-\frac {B}{2\,a}+\frac {A\,1{}\mathrm {i}}{2\,a}}{d\,\left (1+\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}-\frac {x\,\left (B+A\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{2\,a} \]

[In]

int((A + B*tan(c + d*x))/(a + a*tan(c + d*x)*1i),x)

[Out]

((A*1i)/(2*a) - B/(2*a))/(d*(tan(c + d*x)*1i + 1)) - (x*(A*1i + B)*1i)/(2*a)